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A method is presented for the numerical solution of Mathieu’s equation. The power of the 
method lies in the fact that it can be used equally for ordinary and extremely asymptotic problems, 
making possible the computation of Mathieu functions for large values of the parameter with an 
accuracy heretofore unattainable. 

I. INTRODUCTION 

Mathieu functions have been the subject of extensive investigations since they 
were introduced by Mathieu in 1868 in connection with the determination of the 
vibrational modes of an elliptical membrane. Their importance in mathematical 
physics and applied mathematics is well known [l-3]. 

In this paper, we describe briefly a numerical method for the solution of 
Mathieu’s equation 

d‘ydX2 + (A - 2q cos 2x) y = 0, (1) 

which gives accurate results in the range of values of the real parameter q 

o<q<m. (2) 

As is well known [l, 21, Eq. (1) has periodic solutions of period 7r or 2~ when h 
takes a countably infinite set of characteristic values. Here we follow the standard 
notation of [2]. Equation (1) with the associated boundary conditions 

y’(0) = y’(7r) = 0 (3) 

is a regular Sturm-Liouville system [4] whose eigenfunctions are the even periodic 
Mathieu functions 

4x, 41, r = 0, 1, 2 ,... . (4) 

The eigenfunctions of Eq. (1) with the boundary conditions 

Y(O) = m = 0 (5) 
255 
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are the odd periodic Mathieu functions designated 

se& 4b r = 1, 2, 3 ,... . (6) 

The reason for the notation ce, and se,. is that for q = 0 the eigenfunctions of 
systems (1) and (3) and (1) and (5) become, respectively, the trigonometric cosines 
and sines. Because of their importance in the scattering of waves by an elliptic 
cylinder, the solutions of (1) with boundary conditions (3) or (5) are also known as 
elliptic-cylinder functions. [5] 

The main motivation for this work was the fact that although there are adequate 
methods for the numerical solution of (1) when q is not too large [6], say, q < 100, 
we are not aware of the existence of analytical or numerical methods that can solve 
Mathieu’s equation satisfactorily for q very large, e.g., when q = 0(104). The 
reasons for these difficulties are as follows. It is known [l, p. 2401 that for q large, 
systems (1) (3) or (I), (5) have eigenvalues 

h = O(q). 

Thus, a simple division of Eq. (1) by the parameter q shows that in the limit q 
we have a singular perturbation problem [7] 

cd2y/dxZ + (A -2cos2x)y = 0, 

E = l/q-+0, A = h/q = O(1). 

It is well known that, in general, the solution of these problems cannot be obtained 
in the form of a single series that is uniformly valid in the whole domain. A qualita- 
tive knowledge of the solution of (8) might be obtained by using some basic 
concepts of singular perturbation theory [7]. A direct expansion of the solution of 
(8) in powers of the small parameter E gives to first order 

which is certainly an approximation to the solution in most of the domain. A 
preliminary analysis of the boundary layer near x = 7r/2 by means of the stretching 
transformation 

2 = (7r/2 - X)/El12 

indicates that the thickness of the boundary layer is O(&$). This means that in 
the limit E -+ 0 the thickness of the region about x/2, where the solution is not 
negligibly small, approaches zero as #. 
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In his fundamental paper, Goldstein [8] obtained an asymptotic series valid only 
for small values of x, which becomes infinite for x = 42. Twenty two years later, 
Sips [9] obtained another asymptotic series which gives very accurate values in a 
certain neighborhood of x = 7r/2. Blanch showed [lo] that Goldstein’s and Sips’s 
expansions have a rather narrow common region in which both are valid, and thus 
can be matched. The matching is rather delicate because the region where Gold- 
stein’s and Sips’s expansions overlap is a function of the real parameter q and of the 
eigenfunction index r. Thus, the choice of a convenient matching point is not 
straightforward. To our knowledge, for very large values of 4 this matching has 
not been carried out to the point of achieving an accurate computation of the 
Mathieu functions uniformly in the range 0 < x < 7r/2. 

In a later paper, Sips [l l] tried to find a single asymptotic expansion which would 
be uniformly valid in the whole domain 0 < x < 42. He only succeeded in 
again obtaining Goldstein’s expansion valid in a neighborhood of x = 0 and 
also his own previous expansion valid near x = 42. We now understand that 
because Mathieu’s equation becomes a singular perturbation problem for large q, 
such uniformly valid expansion does not probably exist. 

In this paper, we discuss briefly the numerical computation of Mathieu functions 
using a general method developed for the solution of Sturm-Liouville systems [12]. 
Of special interest is the fact that the method has been tested extensively and it has 
showed remarkable numerical stability and accuracy in the range of the real 
variables 

0 < q 9 104, 0 < x < 42. (9) 

Thus, we have found a single numerical method with which we can compute 
Mathieu functions with any desired accuracy in the whole (q, x)-plane. The 
numerical algorithm gives in one pass the complete solution to the problem, i.e., 
any desired number of eigenvalues X, the corresponding normalized eigenfunc- 
tions and their nontrivial zeros. Detailed numerical results are presented for a few 
selected cases and compared with some asymptotic results valid for large q. For 
completeness, we have also compared the results obtained with our method for low 
q with the values shown in Ince’s Tables [5]. 

II. THE NUMERICAL METHOD 

A detailed description of the numerical method has been given in a previous 
paper [12], and so here we give, for the sake of completeness, only a brief descrip- 
tion of its salient features. 
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The coefficient 2q cos 2x in (1) is approximated by the following step function: 

V(x) = 2q cos 2x w V,(x) 

/v, = V(0) = 2q, 0 < x < x1 ; 
v2 = W(xl) + wf,w2, x1 < x < x2 ; 

I.. 
v, = -2q, X,-l < x < x, = 42; 

= CV m+1 = -2% xvi? < x < &+I ; (10) 
V m+2 = M-%L,l) + Wm+2)1/29 J&n+1 <x < &?+2; 

. . . 

v, = V(x,) = 2q, X,-l < x < x, = rr; 
im = n/2. 

Here, n is the total number of steps of equal width used in the approximation. In 
each step, the resulting differential equation has constant coefficients and is inte- 
grated exactly in terms of circular or hyperbolic functions. Specifically, in each 
layer i, the solution of (1) with the approximation (10) is 

where F and G are the circular or hyperbolic cosine and sine, respectively, when 01~ 
is positive or negative, and Ai and Bi are integration constants. If the boundary 
conditions are given by (3) the solutions at the boundary regions i = 1 and i = n, 
respectively, are 

Y = MV,x), Y = -4JUUx - 41, (12) 

and, similarly, for the boundary conditions (5). The solution and its derivative are 
now matched at the interfaces. In this way, we obtain a homogeneous system of 
equations for the integration constants (Ai, i = I,2 **. n; Bi , i = 2, 3 **. IZ - 1). 
The condition for the existence of a nontrivial solution is that the determinant of the 
coefficients be equal to zero. In this way, we obtain a transcendental equation with 
an infinite number of real roots which are the eigenvalues of our approximate 
problem (l), (3) and (10). For each eigenvalue there is a nontrivial solution for Ai , 
Bi that defines the corresponding eigenfunction. The matrix algebra analysis of the 
homogeneous system of equations is given in detail in [12]. Here we summarize 
the essential features of the method. These are as follows: 

(1) The approximation of 2q cos 2x by a step function is essential to the 
method. This is because certain numerical scaling problems that arise for very high 
values of q are solved analytically by using the elementary addition formulas for 
the hyperbolic functions. 
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(2) For any number of steps used in the approximation, we obtain in princi- 
ple the whole infinite spectrum of eigenvalues and eigenfunctions, because the 
homogeneous system obtained is transcendental and has an infinite number of roots. 

(3) As the approximate problem (1) and (10) is solved analytically, the 
absolute accuracy obtained for the eigenvalues and eigenfunctions is approximately 
independent of their index. 

(4) In the implementation of the method, no initial guesses are required for 
the eigenvalues. We only give roughly the range where the eigenvalues lie 

-29 < h < bight , (13) 

where Xrrght is arbitrary and is to be taken sufficiently larger than -2q depending 
on the number of eigenvalues sought. 

(5) As the linear system solution gives the coefficients Ai , Bi (Eqs. (11) 
and (12)) the Mathieu functions can be generated continuously in X. This is an 
essential property of the method because it allows us to obtain the zeros of the 
functions in a simple and efficient way.’ 

III. PERTURBATION THEORY ANALYSIS 

When the coefficient 2q cos 2x in the differential Eq. (1) is approximated by a 
step function (lo), it undergoes a perturbation O(h), where h is the step width [13]. 
A straightforward perturbation theory analysis then shows that we have a first-order 
method, i.e., absolute error both in the eigenvalues and eigenfunctions is O(h) [14]. 
However, although no proof of this fact has yet been found, the numerical results 
below show quite clearly that the method is a second-order method, where the 
eigenvalue absolute errors are O(h2). 

IV. NUMERICAL RESULTS 

As the Mathieu functions are periodic with periods rr or 27r, it is only necessary 
to compute them in the interval 0 < x < 7r/2. The method has been extensively 

1 It has recently come to our attention that Gordon (J. Chem. Phys., 51 (1969), 14) has used 
essentially the same idea as ours to solve Schrodinger’s equation. Instead of approximating the 
potential (in Mathieu’s equation & cos 2x) by a step function, he used a piecewise linear approxi- 
mation to it. This results obviously in a higher order method, where the solutions in each linear 
step are expressed in terms of Airy functions. The qualitative features of both methods are, of 
course, identical. However, a very important advantage results from the simple choice of a constant 
step approximation. This is that we can solve extremely asymptotic problems, using the addition 
formulas for the hyperbolic functions to solve analytically the numerical scaling difficulties. We 
do not think that this can be achieved with the Airy function solutions. 
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tested, and we found that the Mathieu functions can be computed with high 
accuracy everywhere in the range 

0 < x < ?r/2, 0 < q < 104, (14) 

provided that the number of steps n used in the approximation (see Eq. (10)) is 
sufficiently high. No motivation was found to solve the equation for q > 104, 
and the limit of application of the method with regards to these higher values of q 
has not yet been encountered. 

1. Ordinary Problems 

To illustrate the application of the method for low values of q, we have computed 
the first five even periodic Mathieu functions 

ce,(x>, I = 0, l)...) 4, (15) 

for q = 10, by solving the Sturm-Liouville System (l), (3) with the approximation 
(10) where 12 = 500 steps. Only five-figure accuracy was sought as this is the 
accuracy given in Ince’s Tables [5]. The results are shown in Tables I, II and 111. 
In all the calculations performed in this work, we have used Ince’s normalization: 

1,” [ce,(x, q)12 dx = 1: [4x, q)12 dx = 77/Z (16) 

2. Asymptotic Problems 

As discussed in the Introduction, for large values of q the problem is of the 
singular perturbation type. The power of the numerical method is that it can be 

TABLE I 

Eigenvalues for First Five Even Periodic Mathieu Functions, q = 10 

Xr 

r Incea 
This work 
(500 steps) 

0 - 13.9370 -13.9369 
1 -2.39914 -2.39907 
2 7.71737 7.71739 
3 15.5028 15.5028 
4 21.1046 21.1046 

a Ref. [5]. 
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TABLE III 

Nontrivial Zeros of Even Periodic Mathieu Functions (in radians), q = 10 

Ince 

CC2 

This work 
(500 steps) 

Ince 

ce3 

This work 
(500 steps) 

Ince 

cep 

This work Ince This work 
(500 steps) (500 steps) 

1.26988 1.26988 1.01737 1.01737 .759272 .759270 1.32485 1.32485 

equally applied to solve Mathieu’s equation with high accuracy in this region, 
q > 103, where other methods do not seem to be available. 

We have computed first the even and odd Mathieu functions for q = 1600. 
This problem was chosen especially because some partial results on it have been 
published before [lo]. Finally, Mathieu’s equation was solved for q = 2500 and 
q = 10000. The results in the previous section and those to be shown below indicate 
that the same method is uniformly valid in all the range 

0 < q < 104. 

The accuracy of the method and the control of round-off errors will be discussed 
below together with the numerical results. 

The first five eigenvalues for the even or odd periodic Mathieu functions are 
given in Table IV for the case q = 1600, together with the values obtained from 
the asymptotic formula obtained independently by Goldstein [8] and Ince [15, 161. 
The asymptotic formula holds only when the ratio 8(2r + 1)2/q is not too large; 
for the fifth eigenvalue, r = 4 and this ratio is 0.4, so that if higher eigenvalues 

TABLE IV 

Eigenvalues For First Five Even and 
Odd Periodic Mathieu Functions, q = 1,600 

-A, 
- ~~~~-~~~ .-~~ ~~~~ 

Goldstein’s This work, 
r and Ince’s (8000 steps) 

0 3120.2508 3120.2507 
1 2961.2571 2961.2571 
2 2803.2779 2803.2779 
3 2646.3232 2646.3232 
4 2490.403 1 2490.4033 



SOLUTION OF MATHIEU’S EQUATION 263 

were needed in this case, they could not be obtained analytically with the same 
accuracy as those shown in Table IV. In Table V, the absolute errors obtained in 
the eigenvalues for different numbers of steps are shown. It is seen that each 
time the number of steps is doubled, the absolute error in all eigenvalues decreases 
by a factor of four. This Table seems to provide experimental proof of the fact 
that the method is a second-order method, with the absolute error of the eigen- 
values O(P), where h is the step width. The perturbation theory analysis referred 
to before then gives a conservative estimate of the errors. 

TABLE V 

Absolute Errors in the Eigenvalues for Different Number of Steps, q = 1600” 

500 -167 -202 -177 -191 -171 
1000 -46 -50 -46 -47 -44 
2000 -11 -12 -11 -11 -11 
4ooo -2 -3 -2 -2 -2 
8000” 0 0 0 0 0 

a Units in Eighth Significant Figure. 
b A& = X approx. --X exact. 
o The eigenvalues for 8000 steps are considered exact. 

Obviously, if only the eigenvalues are sought, then Goldstein’s and Ince’s 
formula should be used wherever applicable, as it is a simple analytic expression 
[8, Eq. (36)]. In this respect, the asymptotic formula already gives about five- 
(significant)-figure accuracy in the first three eigenvalues for q = 50. For very 
large values of q, say, q > 500, it should be used to great advantage. 

As discussed above, the asymptotic formula loses its accuracy for the higher 
eigenvalues. In this case, the continued fraction method of Blanch and Rhodes 
[17] and Blanch [I 81 gives the eigenvalues accurately. 

It is a well-known fact that the eigenvalues of the even and odd periodic Mathieu 
functions defined by systems (1) and (3), and (1) and (5), approach each other 
asymptotically as q grows [8]. This is already detectable for q = 40, while, e.g., 
for q = 100, there is no difference whatever to five figures in the first sixteen eigen- 
values of the two systems. Actually both the even and odd Mathieu functions also 
approach each other asymptotically in the whole domain 0 < x < 42. Sips 
argued in favor of this point stating that although ce,‘(O, q) = se,+,(O, q) = 0, as 
both functions also approach zero near x = 0, it is true asymptotically that both 
functions and their derivatives are zero for x = 0, and thus both must have the 
same asymptotic expansion. In a later paper, Blanch proved this fact rigorously [19]. 
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Tables VI and VII provide a striking experimental confirmation of the result. 
Table VI shows that except in a small neighborhood x -+ 0, the even and odd 
functions are identical numerically. To nine figures, Table VI1 shows that they 
also have the same zeros. 

It is our experience that whenever a given number of eigenvalues for the even 
and odd functions are the same to a certain accuracy, then the corresponding 
eigenfunctions are also approximately equal to the same accuracy. 

TABLE VI 

First Five Even and Odd Periodic Mathieu Functions, q = 1W 
(Notation: 1.5 - 20 = 1.5 x ltY+) 

X ced.4 cedx) cd.4 4.4 =dx) 

(degrW 4x) se,(x) se&) se&) w.(x) 

0 1.437829 - 34 3.631844 - 33 6.456225 - 32 9.326067 - 31 1.160991 - 29 

0 0 0 0 0 

5 7.353967 - 32 1.701256 - 30 2.768224 - 29 3.658015 - 28 4.163293 - 27 
7.353953 - 32 1.701252 - 30 2.768216 - 29 3.658004 - 28 4.163277 - 26 

10 7.159121 - 29 1.515930 - 27 2.256453 - 26 2.725978 - 25 
20 4.736343 - 23 8.363306 - 22 1.036717 - 20 1.041577 - 19 
30 1.380230 - 17 2.008541 - 16 2.048252 - 15 1.689781 - 14 
40 1.205248 - 12 1.416048 - 11 1.162701 - 10 7.701102 - 10 
50 2.226840 - 8 2.041578 - 7 1.301759 - 6 6.660784 - 6 
60 6.447388 - 5 4.350742 - 4 2.020884 - 3 7.445416 - 3 
70 2.293028 - 2 0.1018120 0.3019907 0.6839989 
80 0.8372609 1.844382 2.269957 1.360523 
90 2.812111 0 - 1.978909 0 

2.834611 - 24 
8.994520 - 19 
1.195895 - 13 
4.362488 - 9 
2.898455 - 5 
2.302085 - 2 
1.236274 
0.4194243 
1.705239 

a Only for the 00 and 5” entries do the even and odd functions differ, the values corresponding 
to ce, and se,+l are at the top and the bottom of these entries, respectively. 

TABLE VII 

Nontrivial Zeros of First Five Even 
and Odd Periodic Mathieu Functions (in radians), q = 1,600 

ce2 
se3 

ce3 
se4 

cep 
se5 

1.49140500 1.43299094 1.38463889 1.51170705 
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Tables VIII, IX, and X show the results for the even and odd periodic Mathieu 
functions for q = 2500. Only system (1) and (3) was solved in this case. Obviously, 
the entries for all even and odd functions are the same except for x = 0. Tables XI, 
XII, and XIII give the results for q = 10 000. 

TABLE VIII 

Eigenvalues For First Five Even 
and Odd Periodic Mathieu Functions, q = 2,500 

Goldstein’s This work 
Y and Ince’s (10 000 steps) 

0 4900.3506 4900.2505 
1 4701.2551 4701.2556 
2 4503.2123 4503.2122 
3 4306.3082 4306.3082 
4 4110.3716 4110.3717 

TABLE IX 

First Five Even and Odd Periodic Mathien Functions, q = 2500 
(Notation: 1.5 - 20 = 1.5 x lWzo) 

c&) 
4.4 

C%(X) 
sed.4 

0 3.133350 - 43 8.851492 - 41 1.761445 - 40 2.851118 - 39 3.981161 - 38 

0 0 0 0 0 

10 5.029117 - 36 1.191197- 34 1.985731 - 33 2.689930 - 32 3.140436 - 31 
20 9.650844 - 29 1.906485 - 21 2.641796 - 26 2.985009 - 25 2.896999 - 24 
30 6.626605 - 22 1.078942 - 20 1.233308 - 19 1.142665 - 18 9.100183 - 18 
40 1.006166 - 14 1.322761 - 14 1.218192 - 13 9.072734 - 13 5.794502 - 12 
50 2.187203 - 10 2.243885 - 9 1.606424 - 8 9.262558 - 8 4.560010 - 7 
60 4.617522 - 6 3.532214 - 5 1.846097 - 4 7.700923 - 4 2.715460 - 3 
70 7.259596 - 3 3.607157 - 2 0.1211428 0.3155416 0.6704233 
80 0.6534798 1.610986 2.337216 1.990763 0.4092900 
90 2.974151 0 .2.094999 - 0 1.807176 

(i Only for the O” entry do the even and odd functions differ. 
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TABLE X 

Nontrivial Zeros of First Five Even 
and Odd Periodic Mathieu Functions (in radians), q = 2,500 

ce, 
se3 

ce3 
se4 

ce4 
se6 

1.49984711 1.44769870 1.40458616 1.51802416 

TABLE XI 

Eigenvalues for First Five Even 
and Odd Periodic Mathieu Functions, q = 10,000 

-4 

r Goldstein’s This work 
and Ince’s (10 000 steps) 

0 19800.2503 19800.2501 
1 19401.2528 19401.2525 
2 19003.2610 19003.2607 
3 18606.2788 18606.2785 
4 18210.3099 18210.3096 

TABLE XII 

First Five Even and Odd Periodic Mathieu Functions, q = 10 OOW 
(Notation: 1.5 - 20 = 1.5 x 10VO 

(de&es) 

0 

10 
20 
30 
40 
50 
60 
70 
80 
90 

1.385951 - 86 

0 

7.740289 - 72 
3.049238 - 57 
1.520331 - 43 
3.668898 - 31 
1.797856 - 20 
8.453103 - 12 
2.076111 - 5 
0.1701774 
3.538554 

5.540359 - 85 

0 

2.595363 - 70 
8.529588 - 56 
3.505917 - 42 
6.832328 - 30 
2.612971 - 19 
9.043767 - I1 
1.461597 - 4 
0.5944281 

0 - 

1.563132 - 83 

0 

6.139168 - 69 
1.682314 - 54 
5.696413 - 41 
8.955079 - 29 
2.667791 - 18 
6.769447 - 10 
7.115789 - 4 
1.345308 
2.497398 

3.594063 - 82 7.142961 - 81 

0 0 

1.182916 - 67 1.969241 - 66 
2.701391 - 53 3.745709 - 52 
7.529950 - 40 8.588816 - 39 
9.538546 - 28 8.757022 - 27 
2.209153 - 17 1.573546 - 16 
4.092237 - 9 2.118370 - 8 
2.762292 - 3 9.053322 - 3 
2.218352 2.689422 

0 2.158656 

a Only for the O0 entry do the even and odd functions differ. 
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TABLE XIII 

Nontrivial Zeros of the First Five 
Even and Odd Periodic Mathieu Functions (in radians), q = 10 000 

ce3 

se4 

cep 

se6 

1.52071250 I .48397540 I .45367652 1.53359058 

The well-known phenomenon of condensation of the zeros toward x = 7~12 
when q -+ co is shown very strikingly in Tables VII, X, and XIII. 

The ease with which the eigenvalues are obtained should be noted here. For 
example, for the calculation of the eigenvalues given in Table XI, the search range 
(13) was -19800.4 < X < 16400; the transcendental function whose zeros are 
the eigenvalues was evaluated at 25 points in it. Whenever a change of sign is 
detected, the zero is found by Muller’s method [20]; the search then continues to 
the right until the next zero is detected. The search is terminated when the range (13) 
is completely scanned or when a predetermined number of eigenvalues has been 
found. As Muller’s method converges quadratically, even in this extreme calcula- 
tion, convergence to any of the five eigenvalues required a maximum of seven itera- 
tions, and each of these only requires in turn the evaluation of the function at two 
points. 

Finally, in Table XIV, we show a comparison of the numerical results with those 
obtained from the asymptotic results of Sips [9, 111. These results were checked by 
Blanch and put in a convenient form for computation [19]; the analytical results 
provide us with an invaluable check of our numerical calculations. 

It is worth mentioning here that if we use a given number of steps which result 
in eigenvalues of lower accuracy than those obtained from the asymptotic formula, 
the accuracy of the eigenfunctions is not improved if we use instead the more 
accurate asymptotic eigenvalues; to the contrary, the accuracy of the eigenfunctions 
decreases considerably. This is due to the fact that the more accurate asymptotic 
eigenvalues are not those that give the solution to the homogeneous system for the 
given number of steps. In other words, the homogeneous system has to be solved 
in a self-consistent way. 

3. Error Analysis 

The accuracy of the calculations presented is now discussed. One possible way 
to give error bounds for a given calculation would be to approximate 2q cos 2x in 
(1) by two different step functions with the same number of steps, one that would 
give an upper bound to the eigenvalues and the other a lower bound. We have not 
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chosen to do so for the following reasons. Analytically, if we approximated 
2q cos 2x by a step function with an arbitrarily large number of steps, we could 
also get arbitrary accuracy in the solutions, provided that the computations could 
be performed without round-off errors. Of course, this is impossible. 

The solutions of Sturm-Liouville systems such as (1) and (3) are defined except 
for an arbitrary factor. Thus, the arbitrary value we assign ce,(O, q) in order to 
start the calculation is by definition exact or round-off free. As we proceed in the 
computation marching from x = 0 to x = r/2, the round-off effects will increase 
and propagate. However, the solutions of (1) and (3) are symmetric or antisymmetric 
about x = 7~12. Therefore, if the computation can be performed until x = 42 
with round-off errors of higher order that the number of significant figures desired, 
then the results are not affected by round-off. There is a very simple way to obtain 
an upper bound for the round-off error at x = 7r/2. Figure 1 illustrates the point 
for ce,(x, q). If we carry the computation from x = 0 to a point to the right of 
x = 7~12, then the difference 

E = II ce,(v/2 + A, q)l - I ce,(d2 - A, dll (17) 

0 7712-A nl2 n/2fA II 

FIG. 1. Illustration showing that the difference between the computed values ce,(n/2 + A, q) 
and ce,(?r/2 - A, q) is an upper bound to the round-off error at x = r/2. 

is an upper bound to the round-off error at x = rr/2. This is because for the 
exact solutions we know that 

E = 0, (18) 

and as we started with the exact value ce,,(O, q), the computed E must be an upper 
bound to the round-off error at rr/2. This seems reasonable because V,(x) in (10) is 
symmetric and the truncation error must also be symmetric, thus, the asymmetry 
in the numerical solutions revealed by the value of E can only be due to the essen- 
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tially nonsymmetric round-off error. Strictly, the fact that E is of higher order than 
the value obtained for @r/2, q) proves only that there is no loss of significance 
in the computation of ce,(n/2, q), although this argument does not apply to the 
computation of ce,(x, q) in 0 < x < n/2. However, we feel that, as we start with 
a round-off free value for ce,(O, q), if ce,(rr/2, q) is not affected by round-off then 
this will also be true in the whole range 0 < x < rr/2. The results shown in Table 
XIV make us confident that this conclusion is justified. 

For each eigenfunction of (l), we print E and thus we have an a posteriori 
check of whether in any calculation we have lost significance or not. The number 
of steps with which 2q cos 2x in (1) approximated can now be increased until 
convergence to any desired number of figures is obtained, provided that the 
significance as checked by the value of E is not lost. 

The results given in the tables for q = 1,600 were obtained with 8,000 steps. 
The maximum difference relative to the results obtained with 7,000 steps was of 
three units in the seventh significant figure for any of the five functions computed. 
The value of E was five orders of magnitude smaller than the seventh significant 
figure kept in ce,(n/2, q). The zeros were identical to nine figures in the 7,000 and 
8,000 step calculations. 

For q = 2,500 and q = 10 000, it was necessary to go up to 10 000 steps to 
obtain convergence to within three units in the seventh significant figure. Again, 
no difference was detected to nine figures in the zeros when using 9000 or 10 000 
steps. Here E was four orders of magnitude smaller than the seventh significant 
figure kept in ce,(n/2, q). Apart from having obtained convergence with the number 
of steps used, we feel confident that the values given for the Mathieu functions in 
Tables VI, IX and XII are accurate to within three units in the seventh significant 
figure; this is because the agreement with the asymptotic results shown in Table XIV 
is best for q = 10 000, when the asymptotic formulas are known to have their 
greatest accuracy. The values for the zeros given in Tables VII, X and XIII are 
believed accurate to nine significant figures. 

Finally, it must be noted that for very large q, the problem of normalization of the 
eigenfunctions could not have been solved if we did not have the zeros or if it were 
not possible to compute the functions continuously in x. In a numerical procedure, 
normalization requires the evaluation of the integral 

s 
a’2 [ce,(x, q)12 dx. 
0 

09) 

As the zeros of the higher eigenfunctions are so close together and as they lie 
precisely in the boundary-layer region where the eigenfunctions are not negligibly 
small, it is not possible to obtain convergence in the numerical integration (19), 
except for r = 0 and 1, no matter how many integration steps are taken, if the 
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integration is done simply between x = 0 and x = z-12. For convergence, it is 
essential to divide the integration interval in subintervals bounded by the zeros 
of ce&, q). In this way, the integrand varies smoothly between the integration 
limits. The number of steps required to obtain convergence in the integrals (19) 
was found to be (r + 1) x 360. 

The calculations were performed with an IBM 360/91 computer. Typically, the 
computer time for a 10 000 step calculation that gives in one pass the results 
summarized in Tables XI, XII, and XIII was eight minutes. 

V. CONCLUSION 

We have discussed a numerical method for the computation of the Mathieu 
functions which gives the complete solution to the problem with any desired accu- 
racy in the range of any conceivable practical application 0 < q < 104, 
0 < x < 42. Its use is very simple, because no initial guesses for the eigenvalues 
are required. Although higher order methods for Sturm-Liouville systems exist, it 
is doubtful that they can be used for the asymptotic problems discussed here, 
because of the enormous numerical scaling problems. In the present semianalytic 
method, these scaling problems are solved analytically. 
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